diff --git a/_questions/machine-learning-zoomcamp/module-4-homework/007_01aa9d5221_TypeError-In-Creating-OneHot-Encoder-Object b/_questions/machine-learning-zoomcamp/module-4-homework/007_01aa9d5221_TypeError-In-Creating-OneHot-Encoder-Object new file mode 100644 index 00000000..8dad5484 --- /dev/null +++ b/_questions/machine-learning-zoomcamp/module-4-homework/007_01aa9d5221_TypeError-In-Creating-OneHot-Encoder-Object @@ -0,0 +1,18 @@ +| id | question | sort_order | +|--------------|---------------------------------------------|-------------| +| 01aa9d5221 | TypeError while creating OneHotEncoder object | 7 | + +You get Type Error when categorical values are oneHotEncoded using sparse as parameter. A sample error message +can be found below for reference + +TypeError Traceback (most recent call last) +Cell In[60], line 4 +2 scaler = StandardScaler() +3 X_train_num = scaler.fit_transform(X_train_num) +----> 4 ohe = OneHotEncoder(sparse=False) +5 X_train_cat = ohe.fit_transform(df_train[categorical_columns].values) +6 X_train_cat + +This error happens because in scikit-learn ≥1.2, the OneHotEncoder no longer uses the sparse parameter. Instead, it now uses sparse_output. +So create OneHotEncoder class using spare_output as argument like below, +ohe = OneHotEncoder(sparse_output=False)