|
| 1 | +import os |
| 2 | + |
| 3 | +import pandas as pd |
| 4 | +import numpy as np |
| 5 | + |
| 6 | +from policyengine_us import Microsimulation |
| 7 | + |
| 8 | +H5_PATH = '/home/baogorek/devl/sep/policyengine-us-data/policyengine_us_data/datasets/cps/long_term/projected_datasets/' |
| 9 | + |
| 10 | +# 2027 |
| 11 | +sim = Microsimulation(dataset = H5_PATH + "2027.h5") |
| 12 | +parameters = sim.tax_benefit_system.parameters |
| 13 | + |
| 14 | +assert sim.default_calculation_period == '2027' |
| 15 | +ss_total_b = sim.calculate("social_security").sum() / 1E9 |
| 16 | + |
| 17 | +# Trustees SingleYearTRTables_TR2025.xlsx, Tab VI.G9 |
| 18 | +# Intermediate scenario for row 69, for Intermediate Scenario, 2027, Cost is: $1,715 billion |
| 19 | +ss_cost_b = 1_715 |
| 20 | +assert ss_total_b > ss_cost_b # 2 years of inflation |
| 21 | + |
| 22 | + |
| 23 | +# Note: not our CPI-W: parameters.gov.bls.cpi.cpi_w("2026-01-05") |
| 24 | +# |
| 25 | +# CPI from Trustees SingleYearTRTables_TR2025.xlsx, Tab VI.G6 |
| 26 | +cpi_w_2025 = 100 |
| 27 | +cpi_w_2027 = 104.95 |
| 28 | + |
| 29 | +cpi_w_2025_b = parameters.gov.ssa.uprating("2025-01-01") |
| 30 | +cpi_w_2027_b = parameters.gov.ssa.uprating("2027-01-01") |
| 31 | + |
| 32 | +ratio = cpi_w_2027 / cpi_w_2025 |
| 33 | +ratio_b = cpi_w_2027_b / cpi_w_2025_b |
| 34 | + |
| 35 | +assert round(ss_total_b) == round(ss_cost_b * ratio) # Fails, but close |
| 36 | + |
| 37 | + |
| 38 | +# 2100 |
| 39 | +sim = Microsimulation(dataset = H5_PATH + "2100.h5") |
| 40 | +parameters = sim.tax_benefit_system.parameters |
| 41 | + |
| 42 | +assert sim.default_calculation_period == '2100' |
| 43 | +ss_total_b = sim.calculate("social_security").sum() / 1E9 |
| 44 | + |
| 45 | +# Trustees SingleYearTRTables_TR2025.xlsx, Tab VI.G9 |
| 46 | +# Intermediate scenario for row 143, for Intermediate Scenario, 2100, Cost is: $1,033,686.26 billion |
| 47 | +ss_cost_b = 5809 |
| 48 | +assert ss_total_b > ss_cost_b # many years of inflation |
| 49 | + |
| 50 | +parameters.gov.ssa.uprating# Note: not our CPI-W: parameters.gov.bls.cpi.cpi_w("2026-01-05") |
| 51 | +# |
| 52 | +# CPI from Trustees SingleYearTRTables_TR2025.xlsx, Tab VI.G6 |
| 53 | +cpi_w_2025 = 100 |
| 54 | +cpi_w_2100 = 592.78 |
| 55 | + |
| 56 | +cpi_w_2025_b = parameters.gov.ssa.uprating("2025-01-06") |
| 57 | +cpi_w_2100_b = parameters.gov.ssa.uprating("2100-01-06") |
| 58 | + |
| 59 | +ratio = cpi_w_2100 / cpi_w_2025 |
| 60 | +ratio_b = cpi_w_2100_b / cpi_w_2025_b |
| 61 | + |
| 62 | +assert round(ss_total_b) == round(ss_cost_b * ratio) # fails, not close! |
| 63 | + |
| 64 | +# Population count, total |
| 65 | +ss_total_pop = 458_325_282 |
| 66 | +total_pop_est = np.sum(sim.calculate("person_weight", map_to="person").weights) |
| 67 | +assert round(ss_total_pop) == round(total_pop_est) |
| 68 | + |
| 69 | +# Population count of 6 year olds |
| 70 | +ss_age6_pop = 5_162_540 |
| 71 | + |
| 72 | +person_weights = sim.calculate("age", map_to="person").weights |
| 73 | +person_ages = sim.calculate("age", map_to="person").values |
| 74 | +person_is_6 = person_ages == 6 |
| 75 | + |
| 76 | +total_age6_est = np.sum(person_is_6 * person_weights) |
| 77 | +assert ss_age6_pop == round(total_age6_est) |
0 commit comments