@@ -49,9 +49,11 @@ secondary <- "#f9c80e"
4949tertiary <- "#177245"
5050fourth_colour <- "#A393BF"
5151fifth_colour <- "#2e8edd"
52- colvec <- c(base = base, primary = primary, secondary = secondary,
53- tertiary = tertiary, fourth_colour = fourth_colour,
54- fifth_colour = fifth_colour)
52+ colvec <- c(
53+ base = base, primary = primary, secondary = secondary,
54+ tertiary = tertiary, fourth_colour = fourth_colour,
55+ fifth_colour = fifth_colour
56+ )
5557library(epiprocess)
5658suppressMessages(library(tidyverse))
5759theme_update(legend.position = "bottom", legend.title = element_blank())
@@ -61,7 +63,7 @@ delphi_pal <- function(n) {
6163}
6264scale_fill_delphi <- function(..., aesthetics = "fill") {
6365 discrete_scale(aesthetics = aesthetics, palette = delphi_pal, ...)
64- }
66+ }
6567scale_color_delphi <- function(..., aesthetics = "color") {
6668 discrete_scale(aesthetics = aesthetics, palette = delphi_pal, ...)
6769}
@@ -124,7 +126,8 @@ cases <- pub_covidcast(
124126 time_type = "day",
125127 geo_type = "state",
126128 time_values = epirange(20200601, 20220101),
127- geo_values = "*") |>
129+ geo_values = "*"
130+ ) |>
128131 select(geo_value, time_value, case_rate = value)
129132
130133deaths <- pub_covidcast(
@@ -133,7 +136,8 @@ deaths <- pub_covidcast(
133136 time_type = "day",
134137 geo_type = "state",
135138 time_values = epirange(20200601, 20220101),
136- geo_values = "*") |>
139+ geo_values = "*"
140+ ) |>
137141 select(geo_value, time_value, death_rate = value)
138142cases_deaths <-
139143 full_join(cases, deaths, by = c("time_value", "geo_value")) |>
@@ -156,7 +160,7 @@ First, to eliminate some of the noise coming from daily reporting, we do 7 day a
156160
157161``` {r smooth}
158162cases_deaths <-
159- cases_deaths |>
163+ cases_deaths |>
160164 group_by(geo_value) |>
161165 epi_slide(
162166 cases_7dav = mean(case_rate, na.rm = TRUE),
@@ -181,7 +185,8 @@ cases_deaths <-
181185 ungroup() |>
182186 mutate(
183187 death_rate = outlr_death_rate_replacement,
184- case_rate = outlr_case_rate_replacement) |>
188+ case_rate = outlr_case_rate_replacement
189+ ) |>
185190 select(geo_value, time_value, case_rate, death_rate)
186191cases_deaths
187192```
@@ -196,8 +201,8 @@ of the states, noting the actual forecast date:
196201forecast_date_label <-
197202 tibble(
198203 geo_value = rep(plot_locations, 2),
199- source = c(rep("case_rate",4), rep("death_rate", 4)),
200- dates = rep(forecast_date - 7* 2, 2 * length(plot_locations)),
204+ source = c(rep("case_rate", 4), rep("death_rate", 4)),
205+ dates = rep(forecast_date - 7 * 2, 2 * length(plot_locations)),
201206 heights = c(rep(150, 4), rep(1.0, 4))
202207 )
203208processed_data_plot <-
@@ -209,7 +214,8 @@ processed_data_plot <-
209214 facet_grid(source ~ geo_value, scale = "free") +
210215 geom_vline(aes(xintercept = forecast_date)) +
211216 geom_text(
212- data = forecast_date_label, aes(x=dates, label = "forecast\ndate", y = heights), size = 3, hjust = "right") +
217+ data = forecast_date_label, aes(x = dates, label = "forecast\ndate", y = heights), size = 3, hjust = "right"
218+ ) +
213219 scale_x_date(date_breaks = "3 months", date_labels = "%Y %b") +
214220 theme(axis.text.x = element_text(angle = 90, hjust = 1))
215221```
@@ -260,7 +266,8 @@ narrow_data_plot <-
260266 facet_grid(source ~ geo_value, scale = "free") +
261267 geom_vline(aes(xintercept = forecast_date)) +
262268 geom_text(
263- data = forecast_date_label, aes(x=dates, label = "forecast\ndate", y = heights), size = 3, hjust = "right") +
269+ data = forecast_date_label, aes(x = dates, label = "forecast\ndate", y = heights), size = 3, hjust = "right"
270+ ) +
264271 scale_x_date(date_breaks = "3 months", date_labels = "%Y %b") +
265272 theme(axis.text.x = element_text(angle = 90, hjust = 1))
266273```
@@ -278,7 +285,8 @@ forecast_plot <-
278285 epipredict:::plot_bands(
279286 restricted_predictions,
280287 levels = 0.9,
281- fill = primary) +
288+ fill = primary
289+ ) +
282290 geom_point(data = restricted_predictions, aes(y = .data$value), color = secondary)
283291```
284292</details >
0 commit comments