You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
To solve the "Longest Valid Parentheses" problem in Java with a `Solution` class, we can follow these steps:
35
+
36
+
1. Define a `Solution` class.
37
+
2. Define a method named `longestValidParentheses` that takes a string `s` as input and returns an integer representing the length of the longest valid parentheses substring.
38
+
3. Initialize a stack to store the indices of characters.
39
+
4. Initialize a variable `maxLen` to store the maximum length of valid parentheses found so far.
40
+
5. Push `-1` onto the stack to mark the starting point of a potential valid substring.
41
+
6. Iterate through each character of the string:
42
+
- If the character is `'('`, push its index onto the stack.
43
+
- If the character is `')'`:
44
+
- Pop the top index from the stack.
45
+
- If the stack is empty after popping, push the current index onto the stack to mark the starting point of the next potential valid substring.
46
+
- Otherwise, update `maxLen` with the maximum of the current `maxLen` and `i - stack.peek()`, where `i` is the current index and `stack.peek()` is the index at the top of the stack.
47
+
7. Return `maxLen`.
48
+
49
+
Here's the implementation:
50
+
51
+
```java
52
+
importjava.util.Stack;
53
+
54
+
publicclassSolution {
55
+
publicintlongestValidParentheses(Strings) {
56
+
int maxLen =0;
57
+
Stack<Integer> stack =newStack<>();
58
+
stack.push(-1); // Mark the starting point of a potential valid substring
59
+
60
+
for (int i =0; i < s.length(); i++) {
61
+
char c = s.charAt(i);
62
+
if (c =='(') {
63
+
stack.push(i);
64
+
} else { // c == ')'
65
+
stack.pop();
66
+
if (stack.isEmpty()) {
67
+
stack.push(i); // Mark the starting point of the next potential valid substring
68
+
} else {
69
+
maxLen =Math.max(maxLen, i - stack.peek());
70
+
}
71
+
}
72
+
}
73
+
74
+
return maxLen;
75
+
}
76
+
}
77
+
```
78
+
79
+
This implementation provides a solution to the "Longest Valid Parentheses" problem in Java. It finds the length of the longest valid parentheses substring in the given string `s`.
0 commit comments