Skip to content

In-Place PyTorch Ops Lower Incorrectly to Out-of-Place #4350

@nishanthrsharma

Description

@nishanthrsharma

PyTorch in-place operations (add_) are being translated into operations that allocate a new output tensor instead of utilizing the Destination-Passing Style (DPS). This violates the in-place contract, resulting in unnecessary memory allocations. The lowering pass should map in-place ops to ops where the original tensor is correctly passed as an operand.

import torch
class SimpleModel(torch.nn.Module):
    def __init__(self):
        super(SimpleModel, self).__init__()

    def forward(self, x):
        return x.add_(x)


model = SimpleModel()


input1_tensor = torch.full((32, 32), 2.0)

import torch_mlir.fx as fx
from torch.export import export

exported_program = export(model, (input1_tensor, ))
print(exported_program)

print("step3: fx.export_and_import")
with torch.no_grad():
    module = fx.export_and_import(
        exported_program,
        (input1_tensor, ),
        output_type="linalg-on-tensors",
        func_name="forward",
        enable_graph_printing=True,
    )
    print(module)

This code generates the following Linalg-IR.

#map = affine_map<(d0, d1) -> (d0, d1)>
module {
  func.func @forward(%arg0: tensor<32x32xf32>) -> (tensor<32x32xf32>, tensor<32x32xf32>) {
    %0 = tensor.empty() : tensor<32x32xf32>
    %1 = linalg.generic {indexing_maps = [#map, #map, #map], iterator_types = ["parallel", "parallel"]} ins(%arg0, %arg0 : tensor<32x32xf32>, tensor<32x32xf32>) outs(%0 : tensor<32x32xf32>) {
    ^bb0(%in: f32, %in_0: f32, %out: f32):
      %2 = arith.addf %in, %in_0 : f32
      linalg.yield %2 : f32
    } -> tensor<32x32xf32>
    return %1, %1 : tensor<32x32xf32>, tensor<32x32xf32>
  }
}

But the semantically correct lowering would be.

#map = affine_map<(d0, d1) -> (d0, d1)>
module {
  func.func @forward(%arg0: tensor<32x32xf32>) -> tensor<32x32xf32> {
    %0 = linalg.generic {indexing_maps = [#map, #map, #map], iterator_types = ["parallel", "parallel"]} ins(%arg0, %arg0 : tensor<32x32xf32>, tensor<32x32xf32>) outs(%arg0: tensor<32x32xf32>) {
    ^bb0(%in: f32, %in_0: f32, %out: f32):
      %2 = arith.addf %in, %in_0 : f32
      linalg.yield %2 : f32
    } -> tensor<32x32xf32>
    return %0 : tensor<32x32xf32>
  }
}

Is there some reason for generating such lowering?

Metadata

Metadata

Assignees

No one assigned

    Labels

    No labels
    No labels

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions