Skip to content
This repository was archived by the owner on Nov 1, 2025. It is now read-only.

Commit 5e311d3

Browse files
committed
Update RFC-00xx-interpolation.md
1 parent cbe60f6 commit 5e311d3

File tree

2 files changed

+74
-1
lines changed

2 files changed

+74
-1
lines changed

.gitignore

Lines changed: 2 additions & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -1 +1,2 @@
1-
**/.DS_STORE
1+
**/.DS_STORE
2+
.idea

RFC-00xx-interpolation.md

Lines changed: 72 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,72 @@
1+
# Interpolation
2+
3+
## Authors
4+
5+
* Allen Goodman (@0x00b1)
6+
7+
## Summary
8+
9+
Interpolation is a technique for adding new data points in a range of a set of known data points. You can use interpolation to fill-in missing data, smooth existing data, make predictions, and more.
10+
11+
Interpolation operators operate on:
12+
13+
* data on a regular grid (i.e., predetermined, not necessarily, uniform, spacing); or
14+
* scattered data on an irregular grid.
15+
16+
### `torch.interpolation.interpolate`
17+
18+
```Python
19+
from typing import Callable, Optional, Tuple
20+
21+
from torch import Tensor
22+
23+
def interpolate(
24+
x: Tuple[Tensor],
25+
v: Tensor,
26+
q: Tuple[Tensor],
27+
f: Callable[[Tuple[Tensor]], Tuple[Tensor]],
28+
*,
29+
out: Optional[Tensor] = None
30+
):
31+
raise NotImplementedError
32+
```
33+
34+
Interpolate $n$-dimensional data on a regular grid (i.e., predetermined, not necessarily, uniform, spacing).
35+
36+
### `torch.interpolation.unstructured_interpolate`
37+
38+
```Python
39+
from typing import Callable, Optional, Tuple
40+
41+
from torch import Tensor
42+
43+
def unstructured_interpolate(
44+
input: Tensor,
45+
points: Tuple[Tensor],
46+
x_i: Tuple[Tensor],
47+
interpolant: Callable[[Tensor], Tensor],
48+
*,
49+
out: Optional[Tensor] = None
50+
):
51+
raise NotImplementedError
52+
```
53+
54+
Interpolate scattered data on an irregular grid.
55+
56+
**Note**—Using this operation in dimensions greater than six is impractical because the memory required by the underlying Delaunay triangulation grows exponentially with its rank.
57+
58+
**Note**—Because this operator uses a Delaunay triangulation, it can be sensitive to scaling issues in `input`. When this occurs, you should standardize `input` to improve the results.
59+
60+
##### Parameters
61+
62+
**input** ([Tensor](https://pytorch.org/docs/stable/tensors.html#torch.Tensor)) –
63+
64+
**points** ([Tensor](https://pytorch.org/docs/stable/tensors.html#torch.Tensor)) –
65+
66+
**x_i** ([Tensor](https://pytorch.org/docs/stable/tensors.html#torch.Tensor)) –
67+
68+
**interpolant** ([Tensor](https://pytorch.org/docs/stable/tensors.html#torch.Tensor)) –
69+
70+
##### Keyword Arguments
71+
72+
**out** ([Tensor](https://pytorch.org/docs/stable/tensors.html#torch.Tensor), *optional*) – output.

0 commit comments

Comments
 (0)