|
| 1 | +{ |
| 2 | + "cells": [ |
| 3 | + { |
| 4 | + "cell_type": "markdown", |
| 5 | + "metadata": {}, |
| 6 | + "source": [ |
| 7 | + "To run this Fenic demo, click **Runtime** > **Run all**.\n", |
| 8 | + "\n", |
| 9 | + "<div class=\"align-center\">\n", |
| 10 | + "<a href=\"https://github.com/typedef-ai/fenic\"><img src=\"https://github.com/typedef-ai/fenic/blob/main/docs/images/typedef-fenic-logo-github-yellow.png?raw=true\" height=\"50\"></a>\n", |
| 11 | + "<a href=\"https://discord.gg/GdqF3J7huR\"><img src=\"https://github.com/typedef-ai/fenic/blob/main/docs/images/join-the-discord.png?raw=true\" height=\"50\"></a>\n", |
| 12 | + "<a href=\"https://docs.fenic.ai/latest/\"><img src=\"https://github.com/typedef-ai/fenic/blob/main/docs/images/documentation.png?raw=true\" height=\"50\"></a>\n", |
| 13 | + "\n", |
| 14 | + "Questions? Join the Discord and ask away! For feature requests or to leave a star, visit our [GitHub](https://github.com/typedef-ai/fenic).\n", |
| 15 | + "\n", |
| 16 | + "</div>\n" |
| 17 | + ] |
| 18 | + }, |
| 19 | + { |
| 20 | + "cell_type": "code", |
| 21 | + "execution_count": null, |
| 22 | + "metadata": {}, |
| 23 | + "outputs": [], |
| 24 | + "source": [ |
| 25 | + "!pip uninstall -y sklearn-compat ibis-framework imbalanced-learn google-genai\n", |
| 26 | + "!pip install polars==1.30.0\n", |
| 27 | + "!pip install huggingface_hub\n", |
| 28 | + "# === GOOGLE GEMINI ===\n", |
| 29 | + "#!pip install fenic[google]\n", |
| 30 | + "# === ANTHROPIC CLAUDE ===\n", |
| 31 | + "#!pip install fenic[anthropic]\n", |
| 32 | + "# === OPENAI (Default) ===\n", |
| 33 | + "!pip install \"fenic[google]\"\n" |
| 34 | + ] |
| 35 | + }, |
| 36 | + { |
| 37 | + "cell_type": "code", |
| 38 | + "execution_count": null, |
| 39 | + "metadata": {}, |
| 40 | + "outputs": [], |
| 41 | + "source": [ |
| 42 | + "import os \n", |
| 43 | + "import getpass\n", |
| 44 | + "\n", |
| 45 | + "# 🔌 MULTI-PROVIDER SETUP - Choose your preferred LLM provider\n", |
| 46 | + "# Uncomment provider sections you are using in your semantic config\n", |
| 47 | + "\n", |
| 48 | + "# === OPENAI (Default) ===\n", |
| 49 | + "#os.environ[\"OPENAI_API_KEY\"] = getpass.getpass(\"OpenAI API Key:\")\n", |
| 50 | + "\n", |
| 51 | + "# === GOOGLE GEMINI ===\n", |
| 52 | + "#os.environ[\"GOOGLE_API_KEY\"] = getpass.getpass(\"Google API Key:\")\n", |
| 53 | + "\n", |
| 54 | + "# === ANTHROPIC CLAUDE ===\n", |
| 55 | + "# os.environ[\"ANTHROPIC_API_KEY\"] = getpass.getpass(\"Anthropic API Key:\")\n" |
| 56 | + ] |
| 57 | + }, |
| 58 | + { |
| 59 | + "cell_type": "markdown", |
| 60 | + "metadata": {}, |
| 61 | + "source": [ |
| 62 | + "# 📄 PDF Processing & Analysis\n", |
| 63 | + "\n", |
| 64 | + "**Hook:** *\"Transform PDFs into structured, queryable data in seconds\"*\n", |
| 65 | + "\n", |
| 66 | + "Research papers, whitepapers, technical documents - PDFs contain valuable information but are notoriously difficult to work with. Traditional PDF processing requires complex parsing, layout analysis, and manual extraction. Watch AI-powered PDF processing convert unstructured documents into structured, searchable data.\n", |
| 67 | + "\n", |
| 68 | + "**What you'll see in this 2-minute demo:**\n", |
| 69 | + "- 📚 **PDF to Markdown** - Intelligent conversion preserving structure and formatting\n", |
| 70 | + "- 🧠 **Content Categorization** - Automatic classification of document sections\n", |
| 71 | + "- 📊 **Structured Extraction** - Products, training methods, key topics identified\n", |
| 72 | + "- ⚡ **Batch Processing** - Multiple PDFs processed and analyzed efficiently\n", |
| 73 | + "\n", |
| 74 | + "Perfect for research analysis, document management, and content discovery.\n" |
| 75 | + ] |
| 76 | + }, |
| 77 | + { |
| 78 | + "cell_type": "code", |
| 79 | + "execution_count": null, |
| 80 | + "metadata": {}, |
| 81 | + "outputs": [], |
| 82 | + "source": [ |
| 83 | + "import fenic as fc\n", |
| 84 | + "from pydantic import BaseModel, Field\n", |
| 85 | + "from typing import List\n", |
| 86 | + "import huggingface_hub as hf\n", |
| 87 | + "import shutil\n", |
| 88 | + "\n", |
| 89 | + "# ⚡ Configure for PDF processing with multiple models\n", |
| 90 | + "session = fc.Session.get_or_create(fc.SessionConfig(\n", |
| 91 | + " app_name=\"pdf_processing_demo\",\n", |
| 92 | + " semantic=fc.SemanticConfig(\n", |
| 93 | + " language_models={\n", |
| 94 | + " \"parse_model\": fc.GoogleDeveloperLanguageModel(\n", |
| 95 | + " model_name=\"gemini-2.5-flash-lite\",\n", |
| 96 | + " rpm=500,\n", |
| 97 | + " tpm=1_000_000,\n", |
| 98 | + " ),\n", |
| 99 | + " \"cheap_model\": fc.OpenAILanguageModel(\n", |
| 100 | + " model_name=\"gpt-5-nano\",\n", |
| 101 | + " rpm=500,\n", |
| 102 | + " tpm=200_000,\n", |
| 103 | + " ),\n", |
| 104 | + " },\n", |
| 105 | + " default_language_model=\"cheap_model\"\n", |
| 106 | + " )\n", |
| 107 | + "))\n", |
| 108 | + "\n", |
| 109 | + "print(\"✅ PDF processing session configured with Gemini for parsing and GPT-5-nano for analysis\")\n" |
| 110 | + ] |
| 111 | + }, |
| 112 | + { |
| 113 | + "cell_type": "markdown", |
| 114 | + "metadata": {}, |
| 115 | + "source": [ |
| 116 | + "## 📄 Step 1: Download Sample PDFs\n", |
| 117 | + "\n", |
| 118 | + "Let's grab some real whitepapers to process - these are complex technical documents perfect for demonstrating AI-powered PDF analysis.\n" |
| 119 | + ] |
| 120 | + }, |
| 121 | + { |
| 122 | + "cell_type": "code", |
| 123 | + "execution_count": null, |
| 124 | + "metadata": {}, |
| 125 | + "outputs": [], |
| 126 | + "source": [ |
| 127 | + "# 📚 Download sample whitepapers from Hugging Face\n", |
| 128 | + "data_dir = \"sample_pdfs/\"\n", |
| 129 | + "os.makedirs(data_dir, exist_ok=True)\n", |
| 130 | + "\n", |
| 131 | + "repo_id = \"typedef-ai/pdf_data\" \n", |
| 132 | + "files = hf.list_repo_files(repo_id=repo_id, repo_type=\"dataset\")\n", |
| 133 | + "\n", |
| 134 | + "print(f\"📥 Downloading whitepapers from {repo_id}...\")\n", |
| 135 | + "for file in files:\n", |
| 136 | + " if file.startswith(\"whitepapers/\"):\n", |
| 137 | + " hf.hf_hub_download(repo_id=repo_id, repo_type=\"dataset\", filename=file, local_dir=data_dir)\n", |
| 138 | + " print(f\" ✅ Downloaded: {file}\")\n", |
| 139 | + "\n", |
| 140 | + "print(f\"📁 PDFs saved to: {data_dir}\")\n" |
| 141 | + ] |
| 142 | + }, |
| 143 | + { |
| 144 | + "cell_type": "markdown", |
| 145 | + "metadata": {}, |
| 146 | + "source": [ |
| 147 | + "## 🧠 Step 2: AI-Powered PDF to Markdown Conversion\n", |
| 148 | + "\n", |
| 149 | + "Now the magic happens - watch AI convert complex PDFs into clean, structured markdown while preserving all the important formatting and hierarchy.\n", |
| 150 | + "\n", |
| 151 | + "First we can filter which documents we parse based on the PDF metadata. In this case, we're only interested in longer, unencrypted documents.\n" |
| 152 | + ] |
| 153 | + }, |
| 154 | + { |
| 155 | + "cell_type": "code", |
| 156 | + "execution_count": null, |
| 157 | + "metadata": {}, |
| 158 | + "outputs": [], |
| 159 | + "source": [ |
| 160 | + "pdf_filtered_df = session.read.pdf_metadata(f\"{data_dir}/**/*.pdf\").filter(\n", |
| 161 | + " (fc.col(\"page_count\") > 3) & (~fc.col(\"is_encrypted\"))\n", |
| 162 | + ")\n", |
| 163 | + "\n", |
| 164 | + "print(f\"📊 Found {pdf_filtered_df.count()} valid PDFs to process\")\n", |
| 165 | + "pdf_filtered_df.select(\"title\", \"page_count\", \"file_path\").show()\n" |
| 166 | + ] |
| 167 | + }, |
| 168 | + { |
| 169 | + "cell_type": "code", |
| 170 | + "execution_count": null, |
| 171 | + "metadata": {}, |
| 172 | + "outputs": [], |
| 173 | + "source": [ |
| 174 | + "# 🚀 Convert PDFs to Markdown using AI\n", |
| 175 | + "print(\"🤖 Converting PDFs to markdown using Gemini...\")\n", |
| 176 | + "pdf_to_md_content = pdf_filtered_df.with_column(\n", |
| 177 | + " \"markdown_content\", \n", |
| 178 | + " fc.semantic.parse_pdf(fc.col(\"file_path\"), model_alias=\"parse_model\")\n", |
| 179 | + ").cache()\n", |
| 180 | + "\n", |
| 181 | + "print(\"✅ PDF to Markdown conversion complete!\")\n", |
| 182 | + "print(f\"📄 Processed {pdf_to_md_content.count()} documents\")\n" |
| 183 | + ] |
| 184 | + }, |
| 185 | + { |
| 186 | + "cell_type": "markdown", |
| 187 | + "metadata": {}, |
| 188 | + "source": [ |
| 189 | + "## 📊 Step 3: Extract Document Structure\n", |
| 190 | + "\n", |
| 191 | + "Fenic's powerful markdown processing can extract any structure from the converted content. Let's break down documents into sections and generate table of contents.\n" |
| 192 | + ] |
| 193 | + }, |
| 194 | + { |
| 195 | + "cell_type": "code", |
| 196 | + "execution_count": null, |
| 197 | + "metadata": {}, |
| 198 | + "outputs": [], |
| 199 | + "source": [ |
| 200 | + "# 📋 Extract document structure and table of contents\n", |
| 201 | + "pdf_sections_df = pdf_to_md_content.select(\n", |
| 202 | + " fc.when(\n", |
| 203 | + " fc.col(\"title\").is_not_null(), \n", |
| 204 | + " fc.col(\"title\")\n", |
| 205 | + " ).otherwise(\n", |
| 206 | + " fc.text.split_part(fc.col(\"file_path\"), \"/\", -1)\n", |
| 207 | + " ).alias(\"name\"),\n", |
| 208 | + " \"markdown_content\",\n", |
| 209 | + " # Extract sections up to level 3 headers\n", |
| 210 | + " fc.markdown.extract_header_chunks(fc.col(\"markdown_content\"), header_level=3).alias(\"sections\"),\n", |
| 211 | + " # Generate table of contents\n", |
| 212 | + " fc.markdown.generate_toc(fc.col(\"markdown_content\")).alias(\"toc\")\n", |
| 213 | + ")\n", |
| 214 | + "\n", |
| 215 | + "print(\"📊 Document structure extracted:\")\n", |
| 216 | + "pdf_sections_df.select(\"name\", \"sections\", \"toc\").show()\n", |
| 217 | + "\n" |
| 218 | + ] |
| 219 | + }, |
| 220 | + { |
| 221 | + "cell_type": "markdown", |
| 222 | + "metadata": {}, |
| 223 | + "source": [ |
| 224 | + "## 🧠 Step 4: AI-Powered Content Analysis\n", |
| 225 | + "\n", |
| 226 | + "Now let's use AI to analyze the content and extract structured insights - what products are mentioned, what sections discuss model training, and more.\n" |
| 227 | + ] |
| 228 | + }, |
| 229 | + { |
| 230 | + "cell_type": "code", |
| 231 | + "execution_count": null, |
| 232 | + "metadata": {}, |
| 233 | + "outputs": [], |
| 234 | + "source": [ |
| 235 | + "# 🎯 Define content categorization schema\n", |
| 236 | + "class PDFContentCategorization(BaseModel):\n", |
| 237 | + " \"\"\"AI-powered PDF content categorization.\"\"\"\n", |
| 238 | + " summary: str = Field(description=\"Brief one sentence summary of the PDF given its table of contents\")\n", |
| 239 | + " sections_about_model_training: List[str] = Field(description=\"List of headings that are specifically about model training\")\n", |
| 240 | + " products_mentioned: List[str] = Field(description=\"All product names mentioned in the PDF table of contents\")\n", |
| 241 | + "\n", |
| 242 | + "print(\"🎯 Content categorization schema defined\")\n" |
| 243 | + ] |
| 244 | + }, |
| 245 | + { |
| 246 | + "cell_type": "code", |
| 247 | + "execution_count": null, |
| 248 | + "metadata": {}, |
| 249 | + "outputs": [], |
| 250 | + "source": [ |
| 251 | + "# 🤖 AI-powered content analysis using table of contents\n", |
| 252 | + "pdf_filtered_details = pdf_sections_df.with_column(\n", |
| 253 | + " \"content_categorization\", \n", |
| 254 | + " fc.semantic.extract(fc.col(\"toc\").cast(fc.StringType), PDFContentCategorization, model_alias=\"cheap_model\")\n", |
| 255 | + ").cache()\n", |
| 256 | + "\n", |
| 257 | + "print(\"✅ AI content analysis complete!\")\n", |
| 258 | + "\n", |
| 259 | + "#pdf_filtered_details.to_polars()" |
| 260 | + ] |
| 261 | + }, |
| 262 | + { |
| 263 | + "cell_type": "markdown", |
| 264 | + "metadata": {}, |
| 265 | + "source": [ |
| 266 | + "## 📊 Step 5: Display Results\n", |
| 267 | + "\n", |
| 268 | + "Let's see what insights AI extracted from our PDFs - summaries, products mentioned, and training-related sections.\n" |
| 269 | + ] |
| 270 | + }, |
| 271 | + { |
| 272 | + "cell_type": "code", |
| 273 | + "execution_count": null, |
| 274 | + "metadata": {}, |
| 275 | + "outputs": [], |
| 276 | + "source": [ |
| 277 | + "# 📊 Display whitepaper summaries and insights\n", |
| 278 | + "print(\"=\"*70)\n", |
| 279 | + "print(\"📄 WHITEPAPER ANALYSIS RESULTS\")\n", |
| 280 | + "print(\"=\"*70)\n", |
| 281 | + "\n", |
| 282 | + "\n", |
| 283 | + "for row in pdf_filtered_details.to_pylist():\n", |
| 284 | + " print(f\"\\n📚 Whitepaper: {row['name']}\")\n", |
| 285 | + " print(f\"📝 Summary: {row['content_categorization']['summary']}\")\n", |
| 286 | + " print(f\"🏷️ Products mentioned: {row['content_categorization']['products_mentioned']}\")\n", |
| 287 | + " print(f\"🧠 Training sections: {row['content_categorization']['sections_about_model_training']}\")\n", |
| 288 | + " print(\"-\" * 50)\n", |
| 289 | + "\n" |
| 290 | + ] |
| 291 | + }, |
| 292 | + { |
| 293 | + "cell_type": "markdown", |
| 294 | + "metadata": {}, |
| 295 | + "source": [ |
| 296 | + "## 🔍 Step 6: Deep Dive into Training Sections\n", |
| 297 | + "\n", |
| 298 | + "Let's filter and examine only the sections that discuss model training - perfect for researchers analyzing AI methodologies.\n" |
| 299 | + ] |
| 300 | + }, |
| 301 | + { |
| 302 | + "cell_type": "code", |
| 303 | + "execution_count": null, |
| 304 | + "metadata": {}, |
| 305 | + "outputs": [], |
| 306 | + "source": [ |
| 307 | + "# 🔍 Filter sections specifically about model training\n", |
| 308 | + "model_training_sections_df = pdf_filtered_details.explode(\"sections\").filter(\n", |
| 309 | + " fc.col(\"sections\").is_not_null() &\n", |
| 310 | + " fc.col(\"content_categorization\").is_not_null() &\n", |
| 311 | + " fc.array_contains(fc.col(\"content_categorization\").sections_about_model_training, fc.col(\"sections\").heading)\n", |
| 312 | + ")\n", |
| 313 | + "\n", |
| 314 | + "print(\"=\"*70)\n", |
| 315 | + "print(\"🧠 MODEL TRAINING SECTIONS ANALYSIS\")\n", |
| 316 | + "print(\"=\"*70)\n", |
| 317 | + "print(f\"📊 Found {model_training_sections_df.count()} sections about model training:\")\n", |
| 318 | + "print()\n", |
| 319 | + "\n", |
| 320 | + "# Display training sections\n", |
| 321 | + "for row in model_training_sections_df.to_pylist():\n", |
| 322 | + " print(f\"📚 Document: {row['name']}\")\n", |
| 323 | + " print(f\"📖 Section: {row['sections']['heading']}\")\n", |
| 324 | + " print(f\"📝 Content preview: {row['sections']['content'][:200]}...\")\n", |
| 325 | + " print(\"-\" * 50)\n" |
| 326 | + ] |
| 327 | + }, |
| 328 | + { |
| 329 | + "cell_type": "markdown", |
| 330 | + "metadata": {}, |
| 331 | + "source": [ |
| 332 | + "## 🎉 What Just Happened?\n", |
| 333 | + "\n", |
| 334 | + "**You just witnessed the future of document processing:**\n", |
| 335 | + "\n", |
| 336 | + "1. **📄 PDF → Markdown**: AI converted complex PDFs into clean, structured markdown while preserving formatting and hierarchy\n", |
| 337 | + "2. **🧠 Content Analysis**: AI analyzed document structure and extracted key insights like products mentioned and training sections \n", |
| 338 | + "3. **📊 Structured Data**: Transformed unstructured PDFs into queryable, structured data\n", |
| 339 | + "4. **🔍 Smart Filtering**: Automatically identified and extracted only relevant sections\n", |
| 340 | + "\n", |
| 341 | + "**This is semantic AI in action** - understanding document content, not just extracting text. Perfect for research analysis, document management, and content discovery.\n", |
| 342 | + "\n", |
| 343 | + "**Try this with your own PDFs** - just change the `data_dir` path and watch AI work its magic!\n" |
| 344 | + ] |
| 345 | + }, |
| 346 | + { |
| 347 | + "cell_type": "code", |
| 348 | + "execution_count": null, |
| 349 | + "metadata": {}, |
| 350 | + "outputs": [], |
| 351 | + "source": [ |
| 352 | + "# 🧹 Cleanup\n", |
| 353 | + "print(\"🧹 Cleaning up downloaded files...\")\n", |
| 354 | + "shutil.rmtree(data_dir)\n", |
| 355 | + "session.stop()\n", |
| 356 | + "print(\"✅ Cleanup complete!\")\n" |
| 357 | + ] |
| 358 | + } |
| 359 | + ], |
| 360 | + "metadata": { |
| 361 | + "kernelspec": { |
| 362 | + "display_name": ".venv", |
| 363 | + "language": "python", |
| 364 | + "name": "python3" |
| 365 | + }, |
| 366 | + "language_info": { |
| 367 | + "codemirror_mode": { |
| 368 | + "name": "ipython", |
| 369 | + "version": 3 |
| 370 | + }, |
| 371 | + "file_extension": ".py", |
| 372 | + "mimetype": "text/x-python", |
| 373 | + "name": "python", |
| 374 | + "nbconvert_exporter": "python", |
| 375 | + "pygments_lexer": "ipython3", |
| 376 | + "version": "3.11.12" |
| 377 | + } |
| 378 | + }, |
| 379 | + "nbformat": 4, |
| 380 | + "nbformat_minor": 2 |
| 381 | +} |
0 commit comments