LFP analysis and classification of metastases
The MATLAB function [trainingData, testData, trainingLines, testLines] = process_data(trainingDataRaw, testDataRaw).
-
Inputs
trainingDataRaw: table loaded from training_data.xlsxtestDataRaw: table loaded from test_data.xlsx
-
Output
trainingLines: name of the animal line of each row of the training sessionstestLines: name of the animal line of each row of the test sessions
Already trained decision trees are loaded in decision-trees/decision_trees.mat. They can be used to predict new data into sham, breast, melanoma or lung categories can be achieved with:
prediction = decisionTrees{iModel}.predict(trainingData.X);
The MATLAB function confusion_matrix(ytrue, ypred, classNames, <optional>) computes and plots a confusion matrix with predictions of all models.
-
Mandatory Inputs
ytrue:N x 1vector of true classesypred:N x #modelsvector of predicted classes. Each column is prediction from a particular modelclassNames: names of classes (e.g. {sham,breast,melanoma,lung})
-
Optional Inputs
title: plot title. None by defaultcLims: color limits. Non by defaultplotText: boolean indicating whether to show confusion matrix numbers. True by defaultsaveName: complete path for saving the confusion matrix. images/confusion_matrix.png by default
-
Optional Outputs
confMat:#classes x #classesconfusion matrix.
Output example
