A great visualization python library used to work with Keras. It uses python's graphviz library to create a presentable graph of the neural network you are building.
Version 2.0 of the ann_visualizer is now released! The community demanded a CNN visualizer, so we updated our module. You can check out an example of a CNN visualization below!
Happy visualizing!
- Download the
ann_visualizerfolder from the github repository. - Place the
ann_visualizerfolder in the same directory as your main python script.
Use the following command:
pip3 install ann_visualizerMake sure you have graphviz installed. Install it using:
sudo apt-get install graphviz && pip3 install graphvizfrom ann_visualizer.visualize import ann_viz;
#Build your model here
ann_viz(model)model- The Keras Sequential modelview- If True, it opens the graph preview after executedfilename- Where to save the graph. (.gv file format)title- A title for the graph
import keras;
from keras.models import Sequential;
from keras.layers import Dense;
network = Sequential();
#Hidden Layer#1
network.add(Dense(units=6,
activation='relu',
kernel_initializer='uniform',
input_dim=11));
#Hidden Layer#2
network.add(Dense(units=6,
activation='relu',
kernel_initializer='uniform'));
#Exit Layer
network.add(Dense(units=1,
activation='sigmoid',
kernel_initializer='uniform'));
from ann_visualizer.visualize import ann_viz;
ann_viz(network, title="");import keras;
from keras.models import Sequential;
from keras.layers import Dense;
from ann_visualizer.visualize import ann_viz
model = build_cnn_model()
ann_viz(model, title="")
def build_cnn_model():
model = keras.models.Sequential()
model.add(
Conv2D(
32, (3, 3),
padding="same",
input_shape=(32, 32, 3),
activation="relu"))
model.add(Dropout(0.2))
model.add(
Conv2D(
32, (3, 3),
padding="same",
input_shape=(32, 32, 3),
activation="relu"))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Dropout(0.2))
model.add(
Conv2D(
64, (3, 3),
padding="same",
input_shape=(32, 32, 3),
activation="relu"))
model.add(Dropout(0.2))
model.add(
Conv2D(
64, (3, 3),
padding="same",
input_shape=(32, 32, 3),
activation="relu"))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Dropout(0.2))
model.add(Flatten())
model.add(Dense(512, activation="relu"))
model.add(Dropout(0.2))
model.add(Dense(10, activation="softmax"))
return modelThis library is still unstable. Please report all bug to the issues section. It is currently tested with python3.5 and python3.6, but it should run just fine on any python3.



