Skip to content

jihad55/cnn

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

1 Commit
 
 

Repository files navigation

cnn

cnn code

Importing the Keras libraries and packages

from keras.models import Sequential from keras.layers import Conv2D from keras.layers import MaxPooling2D from keras.layers import Flatten from keras.layers import Dense

Initialising the CNN

classifier = Sequential()

Step 1 - Convolution

classifier.add(Conv2D(32, (3, 3), input_shape = (64, 64, 3), activation = 'relu'))

Step 2 - Pooling

classifier.add(MaxPooling2D(pool_size = (2, 2)))

Adding a second convolutional layer

classifier.add(Conv2D(32, (3, 3), activation = 'relu')) classifier.add(MaxPooling2D(pool_size = (2, 2)))

Step 3 - Flattening

classifier.add(Flatten())

Step 4 - Full connection

classifier.add(Dense(units = 128, activation = 'relu')) classifier.add(Dense(units = 1, activation = 'sigmoid'))

Compiling the CNN

classifier.compile(optimizer = 'adam', loss = 'binary_crossentropy', metrics = ['accuracy'])

Part 2 - Fitting the CNN to the images

from keras.preprocessing.image import ImageDataGenerator

train_datagen = ImageDataGenerator(rescale = 1./255, shear_range = 0.2, zoom_range = 0.2, horizontal_flip = True)

test_datagen = ImageDataGenerator(rescale = 1./255)

training_set = train_datagen.flow_from_directory('dataset/training_set', target_size = (64, 64), batch_size = 32, class_mode = 'binary')

test_set = test_datagen.flow_from_directory('dataset/test_set', target_size = (64, 64), batch_size = 32, class_mode = 'binary')

classifier.fit_generator(training_set, steps_per_epoch = 8000, epochs = 25, validation_data = test_set, validation_steps = 2000)

#hw import numpy as np from keras.preprocessing import image test_image = image.load_img('dataset/single_prediction/cat_or_dog_1.jpg', target_size = (64, 64)) test_image = image.img_to_array(test_image) test_image = np.expand_dims(test_image, axis = 0) result = classifier.predict(test_image) training_set.class_indices if result[0][0] == 1: prediction = 'dog' else: prediction = 'cat'

About

cnn code

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published