Skip to content
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
12 changes: 8 additions & 4 deletions src/macest/classification/models.py
Original file line number Diff line number Diff line change
Expand Up @@ -205,15 +205,17 @@ def calc_dist_to_neighbours(
neighbours = np.array(
self.graph[cls].knnQueryBatch( # type: ignore
x_star, k=self._num_neighbours, num_threads=num_threads_available
)
),
dtype='float32',
)
class_dist = neighbours[:, 1, :].clip(min=10 ** -15)
class_ind = neighbours[:, 0, :].astype(int)
if self.training_preds_by_class is None:
raise ValueError("training_preds_by_class has already been cached")
class_preds = self.training_preds_by_class[cls]
class_error = np.array(
[class_preds[class_ind[j]] != cls for j in range(x_star.shape[0])]
[class_preds[class_ind[j]] != cls for j in range(x_star.shape[0])],
dtype='bool',
)
else:
if self.distance_to_neighbours is None:
Expand Down Expand Up @@ -507,7 +509,8 @@ def _precompute_neighbours(self) -> PrecomputedNeighbourInfo:
max_neighbours = np.array(
self.model.graph[class_num].knnQueryBatch( # type: ignore
self.x_cal, k=max_nbrs, num_threads=num_threads_available
)
),
dtype='float32',
)
max_dist = max_neighbours[x_cal_len_array, 1]
max_ind = max_neighbours[x_cal_len_array, 0]
Expand All @@ -519,7 +522,8 @@ def _precompute_neighbours(self) -> PrecomputedNeighbourInfo:
[
cls_preds[ind[j].astype(int)] != class_num
for j in range(self.x_cal.shape[0])
]
],
dtype='bool',
) # type: ignore

dist_dict[k] = dist
Expand Down
6 changes: 4 additions & 2 deletions src/macest/regression/models.py
Original file line number Diff line number Diff line change
Expand Up @@ -156,7 +156,8 @@ def calc_nn_dist(self, x_star: np.ndarray) -> Tuple[np.ndarray, np.ndarray]:
neighbours = np.array(
self.prec_graph.knnQueryBatch(
x_star, k=self._num_neighbours, num_threads=num_threads_available
)
),
dtype='float32',
)
dist = neighbours[:, 1, :]
ind = neighbours[:, 0, :].astype(int)
Expand Down Expand Up @@ -437,7 +438,8 @@ def _prec_neighbours(self) -> Tuple[Dict[int, np.ndarray], Dict[int, np.ndarray]
max_neighbours = np.array(
self.prec_graph.knnQueryBatch(
self.x_cal, k=int(max_nbrs), num_threads=num_threads_available
)
),
dtype='float32',
)

max_dist = max_neighbours[x_cal_len_array, 1]
Expand Down